class BigDecimal
BigDecimal
provides arbitrary-precision floating point decimal arithmetic.
Introduction¶ ↑
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13 #=> 1265437718438866624512
BigDecimal
provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0 10_000.times do sum = sum + 0.0001 end print sum #=> 0.9999999999999062
and contrast with the output from:
require 'bigdecimal' sum = BigDecimal("0") 10_000.times do sum = sum + BigDecimal("0.0001") end print sum #=> 0.1E1
Similarly:
(BigDecimal("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") #=> true (1.2 - 1.0) == 0.2 #=> false
A Note About Precision¶ ↑
For a calculation using a BigDecimal and another value
, the precision of the result depends on the type of value
:
-
If
value
is a Float, the precision is Float::DIG + 1. -
If
value
is a Rational, the precision is larger than Float::DIG + 1. -
If
value
is a BigDecimal, the precision isvalue
‘s precision in the internal representation, which is platform-dependent. -
If
value
is other object, the precision is determined by the result of +BigDecimal(value)+.
Special features of accurate decimal arithmetic¶ ↑
Because BigDecimal
is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity¶ ↑
BigDecimal
sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal("1.0") / BigDecimal("0.0") #=> Infinity BigDecimal("-1.0") / BigDecimal("0.0") #=> -Infinity
You can represent infinite numbers to BigDecimal
using the strings 'Infinity'
, '+Infinity'
and '-Infinity'
(case-sensitive)
Not a Number¶ ↑
When a computation results in an undefined value, the special value NaN
(for ‘not a number’) is returned.
Example:
BigDecimal("0.0") / BigDecimal("0.0") #=> NaN
You can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal('NaN') n == 0.0 #=> false n == n #=> false
Positive and negative zero¶ ↑
If a computation results in a value which is too small to be represented as a BigDecimal
within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal
value of negative zero is returned.
BigDecimal("1.0") / BigDecimal("-Infinity") #=> -0.0
If the value is positive, a value of positive zero is returned.
BigDecimal("1.0") / BigDecimal("Infinity") #=> 0.0
(See BigDecimal.mode
for how to specify limits of precision.)
Note that -0.0
and 0.0
are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
bigdecimal/util¶ ↑
When you require bigdecimal/util
, the to_d
method will be available on BigDecimal
and the native Integer
, Float
, Rational
, String
, Complex
, and NilClass
classes:
require 'bigdecimal/util' 42.to_d # => 0.42e2 0.5.to_d # => 0.5e0 (2/3r).to_d(3) # => 0.667e0 "0.5".to_d # => 0.5e0 Complex(0.1234567, 0).to_d(4) # => 0.1235e0 nil.to_d # => 0.0
Methods for Working with JSON¶ ↑
-
::json_create: Returns a new BigDecimal object constructed from the given object.
-
#as_json: Returns a 2-element hash representing
self
. -
#to_json: Returns a JSON string representing
self
.
These methods are provided by the JSON gem. To make these methods available:
require 'json/add/bigdecimal'
Copyright © 2002 by Shigeo Kobayashi <shigeo@tinyforest.gr.jp>.
BigDecimal
is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.
Maintained by mrkn <mrkn@mrkn.jp> and ruby-core members.
Documented by zzak <zachary@zacharyscott.net>, mathew <meta@pobox.com>, and many other contributors.
Constants
- BASE
-
Base value used in internal calculations. On a 32 bit system,
BASE
is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.) - EXCEPTION_ALL
-
Determines whether overflow, underflow or zero divide result in an exception being thrown. See
BigDecimal.mode
. - EXCEPTION_INFINITY
-
Determines what happens when the result of a computation is infinity. See
BigDecimal.mode
. - EXCEPTION_NaN
-
Determines what happens when the result of a computation is not a number (NaN). See
BigDecimal.mode
. - EXCEPTION_OVERFLOW
-
Determines what happens when the result of a computation is an overflow (a result too large to be represented). See
BigDecimal.mode
. - EXCEPTION_UNDERFLOW
-
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See
BigDecimal.mode
. - EXCEPTION_ZERODIVIDE
-
Determines what happens when a division by zero is performed. See
BigDecimal.mode
. - INFINITY
-
Positive infinity value.
- NAN
-
‘Not a Number’ value.
- ROUND_CEILING
-
Round towards +Infinity. See
BigDecimal.mode
. - ROUND_DOWN
-
Indicates that values should be rounded towards zero. See
BigDecimal.mode
. - ROUND_FLOOR
-
Round towards -Infinity. See
BigDecimal.mode
. - ROUND_HALF_DOWN
-
Indicates that digits >= 6 should be rounded up, others rounded down. See
BigDecimal.mode
. - ROUND_HALF_EVEN
-
Round towards the even neighbor. See
BigDecimal.mode
. - ROUND_HALF_UP
-
Indicates that digits >= 5 should be rounded up, others rounded down. See
BigDecimal.mode
. - ROUND_MODE
-
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See
BigDecimal.mode
. - ROUND_UP
-
Indicates that values should be rounded away from zero. See
BigDecimal.mode
. - SIGN_NEGATIVE_FINITE
-
Indicates that a value is negative and finite. See
BigDecimal.sign
. - SIGN_NEGATIVE_INFINITE
-
Indicates that a value is negative and infinite. See
BigDecimal.sign
. - SIGN_NEGATIVE_ZERO
-
Indicates that a value is -0. See
BigDecimal.sign
. - SIGN_NaN
-
Indicates that a value is not a number. See
BigDecimal.sign
. - SIGN_POSITIVE_FINITE
-
Indicates that a value is positive and finite. See
BigDecimal.sign
. - SIGN_POSITIVE_INFINITE
-
Indicates that a value is positive and infinite. See
BigDecimal.sign
. - SIGN_POSITIVE_ZERO
-
Indicates that a value is +0. See
BigDecimal.sign
. - VERSION
-
The version of bigdecimal library
Public Class Methods
Source
static VALUE BigDecimal_load(VALUE self, VALUE str) { BDVALUE v; unsigned char *pch; unsigned char ch; pch = (unsigned char *)StringValueCStr(str); /* First skip max prec. Don't trust the value. */ while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') { if(!ISDIGIT(ch)) { rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string"); } } v = bdvalue_nonnullable(CreateFromString((char *)pch, self, true, true)); return CheckGetValue(v); }
Internal method used to provide marshalling support. See the Marshal module.
Source
static inline VALUE BigDecimal_double_fig(VALUE self) { return INT2FIX(BIGDECIMAL_DOUBLE_FIGURES); }
Returns the number of digits a Float
object is allowed to have; the result is system-dependent:
BigDecimal.double_fig # => 16
Source
static VALUE BigDecimal_s_interpret_loosely(VALUE klass, VALUE str) { char const *c_str = StringValueCStr(str); NULLABLE_BDVALUE v = CreateFromString(c_str, klass, false, true); if (v.bigdecimal_or_nil == Qnil) return Qnil; else return CheckGetValue(bdvalue_nonnullable(v)); }
Returns the BigDecimal
converted loosely from string
.
Source
# File vendor/bundle/ruby/3.4.0/gems/json-2.13.2/lib/json/add/bigdecimal.rb, line 13 def self.json_create(object) BigDecimal._load object['b'] end
See as_json
.
Source
static VALUE BigDecimal_limit(int argc, VALUE *argv, VALUE self) { VALUE nFig; VALUE nCur = SIZET2NUM(VpGetPrecLimit()); if (rb_scan_args(argc, argv, "01", &nFig) == 1) { int nf; if (NIL_P(nFig)) return nCur; nf = NUM2INT(nFig); if (nf < 0) { rb_raise(rb_eArgError, "argument must be positive"); } VpSetPrecLimit(nf); } return nCur; }
Limit the number of significant digits in newly created BigDecimal
numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode
.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
Source
static VALUE BigDecimal_mode(int argc, VALUE *argv, VALUE self) { VALUE which; VALUE val; unsigned long f,fo; rb_scan_args(argc, argv, "11", &which, &val); f = (unsigned long)NUM2INT(which); if (f & VP_EXCEPTION_ALL) { /* Exception mode setting */ fo = VpGetException(); if (val == Qnil) return INT2FIX(fo); if (val != Qfalse && val!=Qtrue) { rb_raise(rb_eArgError, "second argument must be true or false"); return Qnil; /* Not reached */ } if (f & VP_EXCEPTION_INFINITY) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) : (fo & (~VP_EXCEPTION_INFINITY)))); } fo = VpGetException(); if (f & VP_EXCEPTION_NaN) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) : (fo & (~VP_EXCEPTION_NaN)))); } fo = VpGetException(); if (f & VP_EXCEPTION_UNDERFLOW) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) : (fo & (~VP_EXCEPTION_UNDERFLOW)))); } fo = VpGetException(); if(f & VP_EXCEPTION_ZERODIVIDE) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) : (fo & (~VP_EXCEPTION_ZERODIVIDE)))); } fo = VpGetException(); return INT2FIX(fo); } if (VP_ROUND_MODE == f) { /* Rounding mode setting */ unsigned short sw; fo = VpGetRoundMode(); if (NIL_P(val)) return INT2FIX(fo); sw = check_rounding_mode(val); fo = VpSetRoundMode(sw); return INT2FIX(fo); } rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid"); return Qnil; }
Returns an integer representing the mode settings for exception handling and rounding.
These modes control exception handling:
-
BigDecimal::EXCEPTION_NaN.
-
BigDecimal::EXCEPTION_INFINITY.
-
BigDecimal::EXCEPTION_UNDERFLOW.
-
BigDecimal::EXCEPTION_OVERFLOW.
-
BigDecimal::EXCEPTION_ZERODIVIDE.
-
BigDecimal::EXCEPTION_ALL.
Values for setting
for exception handling:
-
true
: sets the givenmode
totrue
. -
false
: sets the givenmode
tofalse
. -
nil
: does not modify the mode settings.
You can use method BigDecimal.save_exception_mode
to temporarily change, and then automatically restore, exception modes.
For clarity, some examples below begin by setting all exception modes to false
.
This mode controls the way rounding is to be performed:
-
BigDecimal::ROUND_MODE
You can use method BigDecimal.save_rounding_mode
to temporarily change, and then automatically restore, the rounding mode.
NaNs
Mode BigDecimal::EXCEPTION_NaN controls behavior when a BigDecimal NaN is created.
Settings:
-
false
(default): ReturnsBigDecimal('NaN')
. -
true
: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0 BigDecimal('NaN') # => NaN BigDecimal.mode(BigDecimal::EXCEPTION_NaN, true) # => 2 BigDecimal('NaN') # Raises FloatDomainError
Infinities
Mode BigDecimal::EXCEPTION_INFINITY controls behavior when a BigDecimal Infinity or -Infinity is created. Settings:
-
false
(default): ReturnsBigDecimal('Infinity')
orBigDecimal('-Infinity')
. -
true
: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0 BigDecimal('Infinity') # => Infinity BigDecimal('-Infinity') # => -Infinity BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, true) # => 1 BigDecimal('Infinity') # Raises FloatDomainError BigDecimal('-Infinity') # Raises FloatDomainError
Underflow
Mode BigDecimal::EXCEPTION_UNDERFLOW controls behavior when a BigDecimal underflow occurs. Settings:
-
false
(default): ReturnsBigDecimal('0')
orBigDecimal('-Infinity')
. -
true
: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0 def flow_under x = BigDecimal('0.1') 100.times { x *= x } end flow_under # => 100 BigDecimal.mode(BigDecimal::EXCEPTION_UNDERFLOW, true) # => 4 flow_under # Raises FloatDomainError
Overflow
Mode BigDecimal::EXCEPTION_OVERFLOW controls behavior when a BigDecimal overflow occurs. Settings:
-
false
(default): ReturnsBigDecimal('Infinity')
orBigDecimal('-Infinity')
. -
true
: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0 def flow_over x = BigDecimal('10') 100.times { x *= x } end flow_over # => 100 BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, true) # => 1 flow_over # Raises FloatDomainError
Zero Division
Mode BigDecimal::EXCEPTION_ZERODIVIDE controls behavior when a zero-division occurs. Settings:
-
false
(default): ReturnsBigDecimal('Infinity')
orBigDecimal('-Infinity')
. -
true
: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0 one = BigDecimal('1') zero = BigDecimal('0') one / zero # => Infinity BigDecimal.mode(BigDecimal::EXCEPTION_ZERODIVIDE, true) # => 16 one / zero # Raises FloatDomainError
All Exceptions
Mode BigDecimal::EXCEPTION_ALL controls all of the above:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0 BigDecimal.mode(BigDecimal::EXCEPTION_ALL, true) # => 23
Rounding
Mode BigDecimal::ROUND_MODE controls the way rounding is to be performed; its setting
values are:
-
ROUND_UP
: Round away from zero. Aliased as:up
. -
ROUND_DOWN
: Round toward zero. Aliased as:down
and:truncate
. -
ROUND_HALF_UP
: Round toward the nearest neighbor; if the neighbors are equidistant, round away from zero. Aliased as:half_up
and:default
. -
ROUND_HALF_DOWN
: Round toward the nearest neighbor; if the neighbors are equidistant, round toward zero. Aliased as:half_down
. -
ROUND_HALF_EVEN
(Banker’s rounding): Round toward the nearest neighbor; if the neighbors are equidistant, round toward the even neighbor. Aliased as:half_even
and:banker
. -
ROUND_CEILING
: Round toward positive infinity. Aliased as:ceiling
and:ceil
. -
ROUND_FLOOR
: Round toward negative infinity. Aliased as:floor:
.
Source
static VALUE BigDecimal_save_exception_mode(VALUE self) { unsigned short const exception_mode = VpGetException(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetException(exception_mode); if (state) rb_jump_tag(state); return ret; }
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false) BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false) BigDecimal(BigDecimal('Infinity')) BigDecimal(BigDecimal('-Infinity')) BigDecimal(BigDecimal('NaN')) end
For use with the BigDecimal::EXCEPTION_*
See BigDecimal.mode
Source
static VALUE BigDecimal_save_limit(VALUE self) { size_t const limit = VpGetPrecLimit(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetPrecLimit(limit); if (state) rb_jump_tag(state); return ret; }
Execute the provided block, but preserve the precision limit
BigDecimal.limit(100) puts BigDecimal.limit BigDecimal.save_limit do BigDecimal.limit(200) puts BigDecimal.limit end puts BigDecimal.limit
Source
static VALUE BigDecimal_save_rounding_mode(VALUE self) { unsigned short const round_mode = VpGetRoundMode(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetRoundMode(round_mode); if (state) rb_jump_tag(state); return ret; }
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do BigDecimal.mode(BigDecimal::ROUND_MODE, :up) puts BigDecimal.mode(BigDecimal::ROUND_MODE) end
For use with the BigDecimal::ROUND_*
See BigDecimal.mode
Public Instance Methods
Source
static VALUE BigDecimal_mod(VALUE self, VALUE r)
Returns the modulus from dividing by b.
See BigDecimal#divmod
.
Source
static VALUE BigDecimal_mult(VALUE self, VALUE r) { if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '*'); return BigDecimal_mult_with_coerce(self, r, 0); }
Multiply by the specified value.
The result precision will be the precision of the sum of each precision.
See BigDecimal#mult
.
Source
# File vendor/bundle/ruby/3.4.0/gems/bigdecimal-3.2.3/lib/bigdecimal.rb, line 61 def **(y) case y when BigDecimal, Integer, Float, Rational power(y) when nil raise TypeError, 'wrong argument type NilClass' else x, y = y.coerce(self) x**y end end
Returns the BigDecimal value of self
raised to power other
:
b = BigDecimal('3.14') b ** 2 # => 0.98596e1 b ** 2.0 # => 0.98596e1 b ** Rational(2, 1) # => 0.98596e1
Related: BigDecimal#power
.
Source
static VALUE BigDecimal_add(VALUE self, VALUE r) { if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '+'); return BigDecimal_addsub_with_coerce(self, r, 0, +1); }
Returns the BigDecimal sum of self
and value
:
b = BigDecimal('111111.111') # => 0.111111111e6 b + 2 # => 0.111113111e6 b + 2.0 # => 0.111113111e6 b + Rational(2, 1) # => 0.111113111e6 b + Complex(2, 0) # => (0.111113111e6+0i)
See the Note About Precision.
Source
static VALUE BigDecimal_uplus(VALUE self) { return self; }
Returns self
:
+BigDecimal(5) # => 0.5e1 +BigDecimal(-5) # => -0.5e1
Source
static VALUE BigDecimal_sub(VALUE self, VALUE r) { if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '-'); return BigDecimal_addsub_with_coerce(self, r, 0, -1); }
Returns the BigDecimal difference of self
and value
:
b = BigDecimal('333333.333') # => 0.333333333e6 b - 2 # => 0.333331333e6 b - 2.0 # => 0.333331333e6 b - Rational(2, 1) # => 0.333331333e6 b - Complex(2, 0) # => (0.333331333e6+0i)
See the Note About Precision.
Source
static VALUE BigDecimal_neg(VALUE self) { BDVALUE a = GetBDValueMust(self); BDVALUE c = NewZeroWrap(1, a.real->Prec * BASE_FIG); VpAsgn(c.real, a.real, -10); RB_GC_GUARD(a.bigdecimal); return CheckGetValue(c); }
Returns the BigDecimal negation of self:
b0 = BigDecimal('1.5') b1 = -b0 # => -0.15e1 b2 = -b1 # => 0.15e1
Source
static VALUE BigDecimal_div(VALUE self, VALUE r) /* For c = self/r: with round operation */ { if (!is_coerceable_to_BigDecimal(r)) return DoSomeOne(self, r, '/'); return BigDecimal_div2(self, r, INT2FIX(0)); }
Divide by the specified value.
The result precision will be the precision of the larger operand, but its minimum is 2*Float::DIG.
See BigDecimal#div
. See BigDecimal#quo
.
Source
static VALUE BigDecimal_lt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '<'); }
Returns true
if self
is less than other
, false
otherwise:
b = BigDecimal('1.5') # => 0.15e1 b < 2 # => true b < 2.0 # => true b < Rational(2, 1) # => true b < 1.5 # => false
Raises an exception if the comparison cannot be made.
Source
static VALUE BigDecimal_le(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'L'); }
Returns true
if self
is less or equal to than other
, false
otherwise:
b = BigDecimal('1.5') # => 0.15e1 b <= 2 # => true b <= 2.0 # => true b <= Rational(2, 1) # => true b <= 1.5 # => true b < 1 # => false
Raises an exception if the comparison cannot be made.
Source
static VALUE BigDecimal_comp(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '*'); }
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
Source
static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); }
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal
.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal
.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
Source
static VALUE BigDecimal_gt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '>'); }
Returns true
if self
is greater than other
, false
otherwise:
b = BigDecimal('1.5') b > 1 # => true b > 1.0 # => true b > Rational(1, 1) # => true b > 2 # => false
Raises an exception if the comparison cannot be made.
Source
static VALUE BigDecimal_ge(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'G'); }
Returns true
if self
is greater than or equal to other
, false
otherwise:
b = BigDecimal('1.5') b >= 1 # => true b >= 1.0 # => true b >= Rational(1, 1) # => true b >= 1.5 # => true b > 2 # => false
Raises an exception if the comparison cannot be made.
Source
static VALUE BigDecimal_decimal_shift(VALUE self, VALUE v) { BDVALUE a, c; ssize_t shift, exponentShift; bool shiftDown; size_t prec; DECDIG ex, iex; a = GetBDValueMust(self); shift = NUM2SSIZET(rb_to_int(v)); if (VpIsZero(a.real) || VpIsNaN(a.real) || VpIsInf(a.real) || shift == 0) return CheckGetValue(a); exponentShift = shift > 0 ? shift / BASE_FIG : (shift + 1) / BASE_FIG - 1; shift -= exponentShift * BASE_FIG; ex = 1; for (int i = 0; i < shift; i++) ex *= 10; shiftDown = a.real->frac[0] * (DECDIG_DBL)ex >= BASE; iex = BASE / ex; prec = a.real->Prec + shiftDown; c = NewZeroWrap(1, prec * BASE_FIG); if (shift == 0) { VpAsgn(c.real, a.real, 1); } else if (shiftDown) { DECDIG carry = 0; exponentShift++; for (size_t i = 0; i < a.real->Prec; i++) { DECDIG v = a.real->frac[i]; c.real->frac[i] = carry * ex + v / iex; carry = v % iex; } c.real->frac[a.real->Prec] = carry * ex; } else { DECDIG carry = 0; for (ssize_t i = a.real->Prec - 1; i >= 0; i--) { DECDIG v = a.real->frac[i]; c.real->frac[i] = v % iex * ex + carry; carry = v / iex; } } while (c.real->frac[prec - 1] == 0) prec--; c.real->Prec = prec; c.real->sign = a.real->sign; c.real->exponent = a.real->exponent; AddExponent(c.real, exponentShift); RB_GC_GUARD(a.bigdecimal); return CheckGetValue(c); }
Returns self * 10**v without changing the precision.
This method is currently for internal use. BigDecimal("0.123e10")._decimal_shift(20) #=> "0.123e30" BigDecimal("0.123e10")._decimal_shift(-20) #=> "0.123e-10"
Source
static VALUE BigDecimal_dump(int argc, VALUE *argv, VALUE self) { BDVALUE v; char *psz; VALUE dummy; volatile VALUE dump; size_t len; rb_scan_args(argc, argv, "01", &dummy); v = GetBDValueMust(self); dump = rb_str_new(0, VpNumOfChars(v.real, "E")+50); psz = RSTRING_PTR(dump); snprintf(psz, RSTRING_LEN(dump), "%"PRIuSIZE":", v.real->Prec*VpBaseFig()); len = strlen(psz); VpToString(v.real, psz+len, RSTRING_LEN(dump)-len, 0, 0); rb_str_resize(dump, strlen(psz)); RB_GC_GUARD(v.bigdecimal); return dump; }
Returns a string representing the marshalling of self
. See module Marshal.
inf = BigDecimal('Infinity') # => Infinity dumped = inf._dump # => "9:Infinity" BigDecimal._load(dumped) # => Infinity
Source
static VALUE BigDecimal_abs(VALUE self) { BDVALUE a = GetBDValueMust(self); BDVALUE c = NewZeroWrap(1, a.real->Prec * BASE_FIG); VpAsgn(c.real, a.real, 10); VpChangeSign(c.real, 1); RB_GC_GUARD(a.bigdecimal); return CheckGetValue(c); }
Returns the BigDecimal absolute value of self
:
BigDecimal('5').abs # => 0.5e1 BigDecimal('-3').abs # => 0.3e1
Source
static VALUE BigDecimal_add2(VALUE self, VALUE b, VALUE n) { return BigDecimal_addsub_with_coerce(self, b, check_int_precision(n), +1); }
Returns the BigDecimal sum of self
and value
with a precision of ndigits
decimal digits.
When ndigits
is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode
.
Examples:
# Set the rounding mode. BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up) b = BigDecimal('111111.111') b.add(1, 0) # => 0.111112111e6 b.add(1, 3) # => 0.111e6 b.add(1, 6) # => 0.111112e6 b.add(1, 15) # => 0.111112111e6 b.add(1.0, 15) # => 0.111112111e6 b.add(Rational(1, 1), 15) # => 0.111112111e6
Source
# File vendor/bundle/ruby/3.4.0/gems/json-2.13.2/lib/json/add/bigdecimal.rb, line 35 def as_json(*) { JSON.create_id => self.class.name, 'b' => _dump.force_encoding(Encoding::UTF_8), } end
Methods BigDecimal#as_json
and BigDecimal.json_create
may be used to serialize and deserialize a BigDecimal object; see Marshal.
Method BigDecimal#as_json
serializes self
, returning a 2-element hash representing self
:
require 'json/add/bigdecimal' x = BigDecimal(2).as_json # => {"json_class"=>"BigDecimal", "b"=>"27:0.2e1"} y = BigDecimal(2.0, 4).as_json # => {"json_class"=>"BigDecimal", "b"=>"36:0.2e1"} z = BigDecimal(Complex(2, 0)).as_json # => {"json_class"=>"BigDecimal", "b"=>"27:0.2e1"}
Method JSON.create
deserializes such a hash, returning a BigDecimal object:
BigDecimal.json_create(x) # => 0.2e1 BigDecimal.json_create(y) # => 0.2e1 BigDecimal.json_create(z) # => 0.2e1
Source
static VALUE BigDecimal_ceil(int argc, VALUE *argv, VALUE self) { return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_CEIL); }
Return the smallest integer greater than or equal to the value, as a BigDecimal
.
BigDecimal('3.14159').ceil #=> 4 BigDecimal('-9.1').ceil #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').ceil(3) #=> 3.142 BigDecimal('13345.234').ceil(-2) #=> 13400.0
Source
static VALUE BigDecimal_coerce(VALUE self, VALUE other) { Real* pv = DATA_PTR(self); BDVALUE b = GetBDValueWithPrecMust(other, GetCoercePrec(pv, 0)); return rb_assoc_new(CheckGetValue(b), self); }
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal
and an object of another type, if the other object can be coerced into a BigDecimal
value.
e.g.
a = BigDecimal("1.0") b = a / 2.0 #=> 0.5
Note that coercing a String
to a BigDecimal
is not supported by default; it requires a special compile-time option when building Ruby.
Source
static VALUE BigDecimal_div3(int argc, VALUE *argv, VALUE self) { VALUE b,n; rb_scan_args(argc, argv, "11", &b, &n); return BigDecimal_div2(self, b, n); }
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to
BigDecimal.mode
.If digits is 0, the result is the same as for the / operator or
quo
.If digits is not specified, the result is an integer, by analogy with Float#div; see also
BigDecimal#divmod
.
See BigDecimal#/
. See BigDecimal#quo
.
Examples:
a = BigDecimal("4") b = BigDecimal("3") a.div(b, 3) # => 0.133e1 a.div(b, 0) # => 0.1333333333333333333e1 a / b # => 0.1333333333333333333e1 a.quo(b) # => 0.1333333333333333333e1 a.div(b) # => 1
Source
static VALUE BigDecimal_divmod(VALUE self, VALUE r) { NULLABLE_BDVALUE div, mod; if (BigDecimal_DoDivmod(self, r, &div, &mod, false)) { return rb_assoc_new(CheckGetValue(bdvalue_nonnullable(div)), CheckGetValue(bdvalue_nonnullable(mod))); } return DoSomeOne(self,r,rb_intern("divmod")); }
Divides by the specified value, and returns the quotient and modulus as BigDecimal
numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal' a = BigDecimal("42") b = BigDecimal("9") q, m = a.divmod(b) c = q * b + m a == c #=> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal
.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
Source
static VALUE BigDecimal_exponent(VALUE self) { ssize_t e = VpExponent10(GetSelfVpValue(self)); return SSIZET2NUM(e); }
Returns the exponent of the BigDecimal
number, as an Integer
.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
Source
static VALUE BigDecimal_IsFinite(VALUE self) { Real *p = GetSelfVpValue(self); if (VpIsNaN(p)) return Qfalse; if (VpIsInf(p)) return Qfalse; return Qtrue; }
Returns True if the value is finite (not NaN or infinite).
Source
static VALUE BigDecimal_fix(VALUE self) { BDVALUE a = GetBDValueMust(self); BDVALUE c = NewZeroWrap(1, (a.real->Prec + 1) * BASE_FIG); VpActiveRound(c.real, a.real, VP_ROUND_DOWN, 0); /* 0: round off */ RB_GC_GUARD(a.bigdecimal); return CheckGetValue(c); }
Return the integer part of the number, as a BigDecimal
.
Source
static VALUE BigDecimal_floor(int argc, VALUE *argv, VALUE self) { return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_FLOOR); }
Return the largest integer less than or equal to the value, as a BigDecimal
.
BigDecimal('3.14159').floor #=> 3 BigDecimal('-9.1').floor #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').floor(3) #=> 3.141 BigDecimal('13345.234').floor(-2) #=> 13300.0
Source
static VALUE BigDecimal_frac(VALUE self) { BDVALUE a = GetBDValueMust(self); BDVALUE c = NewZeroWrap(1, (a.real->Prec + 1) * BASE_FIG); VpFrac(c.real, a.real); RB_GC_GUARD(a.bigdecimal); return CheckGetValue(c); }
Return the fractional part of the number, as a BigDecimal
.
Source
static VALUE BigDecimal_hash(VALUE self) { BDVALUE v = GetBDValueMust(self); st_index_t hash = (st_index_t)v.real->sign; /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */ if(hash == 2 || hash == (st_index_t)-2) { hash ^= rb_memhash(v.real->frac, sizeof(DECDIG)*v.real->Prec); hash += v.real->exponent; } RB_GC_GUARD(v.bigdecimal); return ST2FIX(hash); }
Returns the integer hash value for self
.
Two instances of BigDecimal have the same hash value if and only if they have equal:
-
Sign.
-
Fractional part.
-
Exponent.
Source
static VALUE BigDecimal_IsInfinite(VALUE self) { Real *p = GetSelfVpValue(self); if (VpIsPosInf(p)) return INT2FIX(1); if (VpIsNegInf(p)) return INT2FIX(-1); return Qnil; }
Returns nil, -1, or +1 depending on whether the value is finite, -Infinity, or +Infinity.
Source
static VALUE BigDecimal_inspect(VALUE self) { BDVALUE v; volatile VALUE str; size_t nc; v = GetBDValueMust(self); nc = VpNumOfChars(v.real, "E"); str = rb_str_new(0, nc); VpToString(v.real, RSTRING_PTR(str), RSTRING_LEN(str), 0, 0); rb_str_resize(str, strlen(RSTRING_PTR(str))); RB_GC_GUARD(v.bigdecimal); return str; }
Returns a string representation of self.
BigDecimal("1234.5678").inspect #=> "0.12345678e4"
Source
static VALUE BigDecimal_mult2(VALUE self, VALUE b, VALUE n) { return BigDecimal_mult_with_coerce(self, b, check_int_precision(n)); }
Returns the BigDecimal product of self
and value
with a precision of ndigits
decimal digits.
When ndigits
is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode
.
Examples:
# Set the rounding mode. BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up) b = BigDecimal('555555.555') b.mult(3, 0) # => 0.1666666665e7 b.mult(3, 3) # => 0.167e7 b.mult(3, 6) # => 0.166667e7 b.mult(3, 15) # => 0.1666666665e7 b.mult(3.0, 0) # => 0.1666666665e7 b.mult(Rational(3, 1), 0) # => 0.1666666665e7 b.mult(Complex(3, 0), 0) # => (0.1666666665e7+0.0i)
Source
static VALUE BigDecimal_n_significant_digits(VALUE self) { BDVALUE v = GetBDValueMust(self); if (VpIsZero(v.real) || !VpIsDef(v.real)) { return INT2FIX(0); } ssize_t n = v.real->Prec; /* The length of frac without trailing zeros. */ for (n = v.real->Prec; n > 0 && v.real->frac[n-1] == 0; --n); if (n == 0) return INT2FIX(0); DECDIG x; int nlz = BASE_FIG; for (x = v.real->frac[0]; x > 0; x /= 10) --nlz; int ntz = 0; for (x = v.real->frac[n-1]; x > 0 && x % 10 == 0; x /= 10) ++ntz; RB_GC_GUARD(v.bigdecimal); ssize_t n_significant_digits = BASE_FIG*n - nlz - ntz; return SSIZET2NUM(n_significant_digits); }
Returns the number of decimal significant digits in self
.
BigDecimal("0").n_significant_digits # => 0 BigDecimal("1").n_significant_digits # => 1 BigDecimal("1.1").n_significant_digits # => 2 BigDecimal("3.1415").n_significant_digits # => 5 BigDecimal("-1e20").n_significant_digits # => 1 BigDecimal("1e-20").n_significant_digits # => 1 BigDecimal("Infinity").n_significant_digits # => 0 BigDecimal("-Infinity").n_significant_digits # => 0 BigDecimal("NaN").n_significant_digits # => 0
Source
static VALUE BigDecimal_IsNaN(VALUE self) { Real *p = GetSelfVpValue(self); if (VpIsNaN(p)) return Qtrue; return Qfalse; }
Returns True if the value is Not a Number.
Source
static VALUE BigDecimal_nonzero(VALUE self) { Real *a = GetSelfVpValue(self); return VpIsZero(a) ? Qnil : self; }
Returns self if the value is non-zero, nil otherwise.
Source
# File vendor/bundle/ruby/3.4.0/gems/bigdecimal-3.2.3/lib/bigdecimal.rb, line 81 def power(y, prec = nil) Internal.validate_prec(prec, :power) if prec x = self y = Internal.coerce_to_bigdecimal(y, prec || n_significant_digits, :power) return Internal.nan_computation_result if x.nan? || y.nan? return BigDecimal(1) if y.zero? if y.infinite? if x < 0 return BigDecimal(0) if x < -1 && y.negative? return BigDecimal(0) if x > -1 && y.positive? raise Math::DomainError, 'Result undefined for negative base raised to infinite power' elsif x < 1 return y.positive? ? BigDecimal(0) : BigDecimal::Internal.infinity_computation_result elsif x == 1 return BigDecimal(1) else return y.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0) end end if x.infinite? && y < 0 # Computation result will be +0 or -0. Avoid overflow. neg = x < 0 && y.frac.zero? && y % 2 == 1 return neg ? -BigDecimal(0) : BigDecimal(0) end if x.zero? return BigDecimal(1) if y.zero? return BigDecimal(0) if y > 0 if y.frac.zero? && y % 2 == 1 && x.sign == -1 return -BigDecimal::Internal.infinity_computation_result else return BigDecimal::Internal.infinity_computation_result end elsif x < 0 if y.frac.zero? if y % 2 == 0 return (-x).power(y, prec) else return -(-x).power(y, prec) end else raise Math::DomainError, 'Computation results in complex number' end elsif x == 1 return BigDecimal(1) end prec ||= BigDecimal.limit.nonzero? frac_part = y.frac if frac_part.zero? && !prec # Infinite precision calculation for `x ** int` and `x.power(int)` int_part = y.fix.to_i int_part = -int_part if (neg = int_part < 0) ans = BigDecimal(1) n = 1 xn = x while true ans *= xn if int_part.allbits?(n) n <<= 1 break if n > int_part xn *= xn # Detect overflow/underflow before consuming infinite memory if (xn.exponent.abs - 1) * int_part / n >= 0x7FFFFFFFFFFFFFFF return ((xn.exponent > 0) ^ neg ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0)) * (int_part.even? || x > 0 ? 1 : -1) end end return neg ? BigDecimal(1) / ans : ans end prec ||= [x.n_significant_digits, y.n_significant_digits, BigDecimal.double_fig].max + BigDecimal.double_fig if y < 0 inv = x.power(-y, prec) return BigDecimal(0) if inv.infinite? return BigDecimal::Internal.infinity_computation_result if inv.zero? return BigDecimal(1).div(inv, prec) end int_part = y.fix.to_i prec2 = prec + BigDecimal.double_fig pow_prec = prec2 + (int_part > 0 ? y.exponent : 0) ans = BigDecimal(1) n = 1 xn = x while true ans = ans.mult(xn, pow_prec) if int_part.allbits?(n) n <<= 1 break if n > int_part xn = xn.mult(xn, pow_prec) end unless frac_part.zero? ans = ans.mult(BigMath.exp(BigMath.log(x, prec2).mult(frac_part, prec2), prec2), prec2) end ans.mult(1, prec) end
Returns the value raised to the power of n.
Also available as the operator **.
Source
static VALUE BigDecimal_precision(VALUE self) { ssize_t precision; BigDecimal_count_precision_and_scale(self, &precision, NULL); return SSIZET2NUM(precision); }
Returns the number of decimal digits in self
:
BigDecimal("0").precision # => 0 BigDecimal("1").precision # => 1 BigDecimal("1.1").precision # => 2 BigDecimal("3.1415").precision # => 5 BigDecimal("-1e20").precision # => 21 BigDecimal("1e-20").precision # => 20 BigDecimal("Infinity").precision # => 0 BigDecimal("-Infinity").precision # => 0 BigDecimal("NaN").precision # => 0
Source
static VALUE BigDecimal_precision_scale(VALUE self) { ssize_t precision, scale; BigDecimal_count_precision_and_scale(self, &precision, &scale); return rb_assoc_new(SSIZET2NUM(precision), SSIZET2NUM(scale)); }
Returns a 2-length array; the first item is the result of BigDecimal#precision
and the second one is of BigDecimal#scale
.
See BigDecimal#precision
. See BigDecimal#scale
.
Source
static VALUE BigDecimal_prec(VALUE self) { BDVALUE v; VALUE obj; rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "BigDecimal#precs is deprecated and will be removed in the future; " "use BigDecimal#precision instead."); v = GetBDValueMust(self); obj = rb_assoc_new(SIZET2NUM(v.real->Prec*VpBaseFig()), SIZET2NUM(v.real->MaxPrec*VpBaseFig())); RB_GC_GUARD(v.bigdecimal); return obj; }
Returns an Array of two Integer
values that represent platform-dependent internal storage properties.
This method is deprecated and will be removed in the future. Instead, use BigDecimal#n_significant_digits
for obtaining the number of significant digits in scientific notation, and BigDecimal#precision
for obtaining the number of digits in decimal notation.
Source
static VALUE BigDecimal_quo(int argc, VALUE *argv, VALUE self) { VALUE value, digits, result; SIGNED_VALUE n = -1; argc = rb_scan_args(argc, argv, "11", &value, &digits); if (argc > 1) { n = check_int_precision(digits); } if (n > 0) { result = BigDecimal_div2(self, value, digits); } else { result = BigDecimal_div(self, value); } return result; }
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to the given number of digits, according to the rounding mode indicated by
BigDecimal.mode
.If digits is 0 or omitted, the result is the same as for the / operator.
See BigDecimal#/
. See BigDecimal#div
.
Source
static VALUE BigDecimal_remainder(VALUE self, VALUE r) /* remainder */ { NULLABLE_BDVALUE div, mod = { Qnil, NULL }; if (BigDecimal_DoDivmod(self, r, &div, &mod, true)) { return CheckGetValue(bdvalue_nonnullable(mod)); } return DoSomeOne(self, r, rb_intern("remainder")); }
Returns the remainder from dividing by the value.
x.remainder(y) means x-y*(x/y).truncate
Source
static VALUE BigDecimal_round(int argc, VALUE *argv, VALUE self) { BDVALUE c, a; int iLoc = 0; VALUE vLoc; VALUE vRound; int round_to_int = 0; size_t mx; unsigned short sw = VpGetRoundMode(); switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) { case 0: iLoc = 0; round_to_int = 1; break; case 1: if (RB_TYPE_P(vLoc, T_HASH)) { sw = check_rounding_mode_option(vLoc); } else { iLoc = NUM2INT(vLoc); if (iLoc < 1) round_to_int = 1; } break; case 2: iLoc = NUM2INT(vLoc); if (RB_TYPE_P(vRound, T_HASH)) { sw = check_rounding_mode_option(vRound); } else { sw = check_rounding_mode(vRound); } break; default: break; } a = GetBDValueMust(self); mx = (a.real->Prec + 1) * BASE_FIG; c = NewZeroWrap(1, mx); VpActiveRound(c.real, a.real, sw, iLoc); RB_GC_GUARD(a.bigdecimal); if (round_to_int) { return BigDecimal_to_i(CheckGetValue(c)); } return CheckGetValue(c); }
Round to the nearest integer (by default), returning the result as a BigDecimal
if n is specified and positive, or as an Integer
if it isn’t.
BigDecimal('3.14159').round #=> 3 BigDecimal('8.7').round #=> 9 BigDecimal('-9.9').round #=> -10 BigDecimal('3.14159').round(2).class.name #=> "BigDecimal" BigDecimal('3.14159').round.class.name #=> "Integer" BigDecimal('3.14159').round(0).class.name #=> "Integer"
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an Integer
.
BigDecimal('3.14159').round(3) #=> 3.142 BigDecimal('13345.234').round(-2) #=> 13300
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode
.
Source
static VALUE BigDecimal_scale(VALUE self) { ssize_t scale; BigDecimal_count_precision_and_scale(self, NULL, &scale); return SSIZET2NUM(scale); }
Returns the number of decimal digits following the decimal digits in self
.
BigDecimal("0").scale # => 0 BigDecimal("1").scale # => 0 BigDecimal("1.1").scale # => 1 BigDecimal("3.1415").scale # => 4 BigDecimal("-1e20").scale # => 0 BigDecimal("1e-20").scale # => 20 BigDecimal("Infinity").scale # => 0 BigDecimal("-Infinity").scale # => 0 BigDecimal("NaN").scale # => 0
Source
static VALUE BigDecimal_sign(VALUE self) { /* sign */ int s = GetSelfVpValue(self)->sign; return INT2FIX(s); }
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0. It behaves the same with zeros - it returns a positive value for a positive zero (BigDecimal(‘0’)) and a negative value for a negative zero (BigDecimal(‘-0’)).
The specific value returned indicates the type and sign of the BigDecimal
, as follows:
BigDecimal::SIGN_NaN
-
value is Not a Number
BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +Infinity
BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -Infinity
BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
Source
static VALUE BigDecimal_split(VALUE self) { BDVALUE v; VALUE obj,str; ssize_t e, s; char *psz1; v = GetBDValueMust(self); str = rb_str_new(0, VpNumOfChars(v.real, "E")); psz1 = RSTRING_PTR(str); VpSzMantissa(v.real, psz1, RSTRING_LEN(str)); s = 1; if(psz1[0] == '-') { size_t len = strlen(psz1 + 1); memmove(psz1, psz1 + 1, len); psz1[len] = '\0'; s = -1; } if (psz1[0] == 'N') s = 0; /* NaN */ e = VpExponent10(v.real); obj = rb_ary_new2(4); rb_ary_push(obj, INT2FIX(s)); rb_ary_push(obj, str); rb_str_resize(str, strlen(psz1)); rb_ary_push(obj, INT2FIX(10)); rb_ary_push(obj, SSIZET2NUM(e)); RB_GC_GUARD(v.bigdecimal); return obj; }
Splits a BigDecimal
number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal
, and is -1 or 1, or 0 if the BigDecimal
is Not a Number.
The second value is a string representing the significant digits of the BigDecimal
, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer
.
The fourth value is an Integer
exponent.
If the BigDecimal
can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal
to a float as follows:
sign, significant_digits, base, exponent = a.split f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f
method is provided as a more convenient way to translate a BigDecimal
to a Float
.)
Source
# File vendor/bundle/ruby/3.4.0/gems/bigdecimal-3.2.3/lib/bigdecimal.rb, line 185 def sqrt(prec) Internal.validate_prec(prec, :sqrt, accept_zero: true) return Internal.infinity_computation_result if infinite? == 1 raise FloatDomainError, 'sqrt of negative value' if self < 0 raise FloatDomainError, "sqrt of 'NaN'(Not a Number)" if nan? return self if zero? limit = BigDecimal.limit.nonzero? if prec == 0 # BigDecimal#sqrt calculates at least n_significant_digits precision. # This feature maybe problematic for some cases. n_digits = n_significant_digits prec = [prec, n_digits].max ex = exponent / 2 x = _decimal_shift(-2 * ex) y = BigDecimal(Math.sqrt(x.to_f)) precs = [prec + BigDecimal.double_fig] precs << 2 + precs.last / 2 while precs.last > BigDecimal.double_fig precs.reverse_each do |p| y = y.add(x.div(y, p), p).div(2, p) end y = y.mult(1, limit) if limit y._decimal_shift(ex) end
Returns the square root of the value.
Result has at least prec significant digits.
Source
static VALUE BigDecimal_sub2(VALUE self, VALUE b, VALUE n) { return BigDecimal_addsub_with_coerce(self, b, check_int_precision(n), -1); }
Subtract the specified value.
e.g.
c = a.sub(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to
BigDecimal.mode
.
Source
# File vendor/bundle/ruby/3.4.0/gems/bigdecimal-3.2.3/lib/bigdecimal/util.rb, line 110 def to_d self end
Returns self.
require 'bigdecimal/util' d = BigDecimal("3.14") d.to_d # => 0.314e1
Source
# File vendor/bundle/ruby/3.4.0/gems/bigdecimal-3.2.3/lib/bigdecimal/util.rb, line 90 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s _,f,_,z = self.frac.split i + "." + ("0"*(-z)) + f end end
Converts a BigDecimal
to a String
of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s
(“F”) instead.
require 'bigdecimal/util' d = BigDecimal("3.14") d.to_digits # => "3.14"
Source
static VALUE BigDecimal_to_f(VALUE self) { double d; SIGNED_VALUE e; char *buf; volatile VALUE str; BDVALUE v = GetBDValueMust(self); bool negative = BIGDECIMAL_NEGATIVE_P(v.real); if (VpVtoD(&d, &e, v.real) != 1) return rb_float_new(d); if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG)) goto overflow; if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-DBL_DIG)) goto underflow; str = rb_str_new(0, VpNumOfChars(v.real, "E")); buf = RSTRING_PTR(str); VpToString(v.real, buf, RSTRING_LEN(str), 0, 0); RB_GC_GUARD(v.bigdecimal); errno = 0; d = strtod(buf, 0); if (errno == ERANGE) { if (d == 0.0) goto underflow; if (fabs(d) >= HUGE_VAL) goto overflow; } return rb_float_new(d); overflow: VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0); if (negative) return rb_float_new(VpGetDoubleNegInf()); else return rb_float_new(VpGetDoublePosInf()); underflow: VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0); if (negative) return rb_float_new(-0.0); else return rb_float_new(0.0); }
Returns a new Float
object having approximately the same value as the BigDecimal
number. Normal accuracy limits and built-in errors of binary Float
arithmetic apply.
Source
static VALUE BigDecimal_to_i(VALUE self) { BDVALUE v; VALUE ret; v = GetBDValueMust(self); BigDecimal_check_num(v.real); if (v.real->exponent <= 0) return INT2FIX(0); if (v.real->exponent == 1) { ret = LONG2NUM((long)(VpGetSign(v.real) * (DECDIG_DBL_SIGNED)v.real->frac[0])); } else { VALUE fix = (ssize_t)v.real->Prec > v.real->exponent ? BigDecimal_fix(self) : self; VALUE digits = RARRAY_AREF(BigDecimal_split(fix), 1); ssize_t dpower = VpExponent10(v.real) - (ssize_t)RSTRING_LEN(digits); ret = rb_funcall(digits, rb_intern("to_i"), 0); if (BIGDECIMAL_NEGATIVE_P(v.real)) { ret = rb_funcall(ret, '*', 1, INT2FIX(-1)); } if (dpower) { VALUE pow10 = rb_funcall(INT2FIX(10), rb_intern("**"), 1, SSIZET2NUM(dpower)); // In Ruby < 3.4, int**int may return Float::INFINITY if (RB_TYPE_P(pow10, T_FLOAT)) rb_raise(rb_eFloatDomainError, "Infinity"); ret = rb_funcall(ret, '*', 1, pow10); } } RB_GC_GUARD(v.bigdecimal); return ret; }
Returns the value as an Integer
.
If the BigDecimal
is infinity or NaN, raises FloatDomainError.
Returns the value as an Integer
.
If the BigDecimal
is infinity or NaN, raises FloatDomainError.
Source
# File vendor/bundle/ruby/3.4.0/gems/json-2.13.2/lib/json/add/bigdecimal.rb, line 55 def to_json(*args) as_json.to_json(*args) end
Returns a JSON
string representing self
:
require 'json/add/bigdecimal' puts BigDecimal(2).to_json puts BigDecimal(2.0, 4).to_json puts BigDecimal(Complex(2, 0)).to_json
Output:
{"json_class":"BigDecimal","b":"27:0.2e1"} {"json_class":"BigDecimal","b":"36:0.2e1"} {"json_class":"BigDecimal","b":"27:0.2e1"}
Source
static VALUE BigDecimal_to_r(VALUE self) { BDVALUE v; ssize_t sign, power, denomi_power; VALUE a, digits, numerator; v = GetBDValueMust(self); BigDecimal_check_num(v.real); sign = VpGetSign(v.real); power = VpExponent10(v.real); RB_GC_GUARD(v.bigdecimal); a = BigDecimal_split(self); digits = RARRAY_AREF(a, 1); denomi_power = power - RSTRING_LEN(digits); numerator = rb_funcall(digits, rb_intern("to_i"), 0); if (sign < 0) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (denomi_power < 0) { return rb_Rational(numerator, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-denomi_power))); } else { return rb_Rational1(rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(denomi_power)))); } }
Converts a BigDecimal
to a Rational
.
Source
static VALUE BigDecimal_to_s(int argc, VALUE *argv, VALUE self) { int fmt = 0; /* 0: E format, 1: F format */ int fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */ BDVALUE v; volatile VALUE str; char *psz; char ch; size_t nc, mc = 0; SIGNED_VALUE m; VALUE f; v = GetBDValueMust(self); if (rb_scan_args(argc, argv, "01", &f) == 1) { if (RB_TYPE_P(f, T_STRING)) { psz = StringValueCStr(f); if (*psz == ' ') { fPlus = 1; psz++; } else if (*psz == '+') { fPlus = 2; psz++; } while ((ch = *psz++) != 0) { if (ISSPACE(ch)) { continue; } if (!ISDIGIT(ch)) { if (ch == 'F' || ch == 'f') { fmt = 1; /* F format */ } break; } mc = mc*10 + ch - '0'; } } else { m = NUM2INT(f); if (m <= 0) { rb_raise(rb_eArgError, "argument must be positive"); } mc = (size_t)m; } } if (fmt) { nc = VpNumOfChars(v.real, "F"); } else { nc = VpNumOfChars(v.real, "E"); } if (mc > 0) { nc += (nc + mc - 1) / mc + 1; } str = rb_usascii_str_new(0, nc); psz = RSTRING_PTR(str); if (fmt) { VpToFString(v.real, psz, RSTRING_LEN(str), mc, fPlus); } else { VpToString (v.real, psz, RSTRING_LEN(str), mc, fPlus); } rb_str_resize(str, strlen(psz)); RB_GC_GUARD(v.bigdecimal); return str; }
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many digits, starting from ‘.’ and counting outwards.
If s ends with an ‘E’, scientific notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal('-1234567890123.45678901234567890').to_s('5F') #=> '-123 45678 90123.45678 90123 45678 9' BigDecimal('1234567890123.45678901234567890').to_s('+8F') #=> '+12345 67890123.45678901 23456789' BigDecimal('1234567890123.45678901234567890').to_s(' F') #=> ' 1234567890123.4567890123456789'
Source
static VALUE BigDecimal_truncate(int argc, VALUE *argv, VALUE self) { return BigDecimal_truncate_floor_ceil(argc, argv, self, VP_ROUND_DOWN); }
Truncate to the nearest integer (by default), returning the result as a BigDecimal
.
BigDecimal('3.14159').truncate #=> 3 BigDecimal('8.7').truncate #=> 8 BigDecimal('-9.9').truncate #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal('3.14159').truncate(3) #=> 3.141 BigDecimal('13345.234').truncate(-2) #=> 13300.0
Source
ifdef BIGDECIMAL_USE_VP_TEST_METHODS VALUE BigDecimal_vpdivd(VALUE self, VALUE r, VALUE cprec) { BDVALUE a,b,c,d; size_t cn = NUM2INT(cprec); a = GetBDValueMust(self); b = GetBDValueMust(r); c = NewZeroWrap(1, cn * BASE_FIG); d = NewZeroWrap(1, VPDIVD_REM_PREC(a.real, b.real, c.real) * BASE_FIG); VpDivd(c.real, d.real, a.real, b.real); RB_GC_GUARD(a.bigdecimal); RB_GC_GUARD(b.bigdecimal); return rb_assoc_new(c.bigdecimal, d.bigdecimal); }
Source
VALUE BigDecimal_vpmult(VALUE self, VALUE v) { BDVALUE a,b,c; a = GetBDValueMust(self); b = GetBDValueMust(v); c = NewZeroWrap(1, VPMULT_RESULT_PREC(a.real, b.real) * BASE_FIG); VpMult(c.real, a.real, b.real); RB_GC_GUARD(a.bigdecimal); RB_GC_GUARD(b.bigdecimal); return c.bigdecimal; }
Source
static VALUE BigDecimal_zero(VALUE self) { Real *a = GetSelfVpValue(self); return VpIsZero(a) ? Qtrue : Qfalse; }
Returns True if the value is zero.